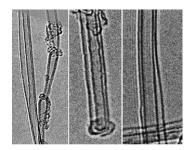
SPOTLIGHTS ...



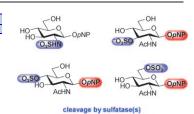
Carbon Nanotubes

G. Q. Ning, H. Shinohara*

Unsynchronized Diameter Changes of Double-Wall Carbon Nanotubes during Chemical Vapour Deposition Growth

Unsynchronized growing! Unsynchronized diameter changes of the inner and the outer tubes are observed in the double-wall carbon nanotubes (DWNTs) prepared by CoMo/MgO catalysts. The difference of the growth surroundings for the inner and outer tubes of DWNTs can consistently explain the observed unsynchronized diameter changes.

Chem. Asian J. DOI: 10.1002/asia.200800347



Glycobiology

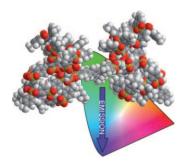
K. J. Loft, P. Bojarová, K. Slámová, V. Křen,* S. J. Williams*

Synthesis of Sulfated Glucosaminides for Profiling Substrate Specificities of Sulfatases and Fungal β -N-Acetylhexosaminidases

Systematic sulfation: Sulfated glycoconjugates are degraded either by desulfation followed by glycoside cleavage, or by glycoside cleavage followed by desulfation. To study these processes, here we report the synthesis of four regioisomerically sulfated p-nitrophenyl glucosaminides from the common precursor p-nitrophenyl N-acetyl- β -D-glucosaminide. These substrates allowed the rapid analysis of the substrate preferences of a set of four sulfatases and 24 hexosaminidases.

ChemBioChem

DOI: 10.1002/cbic.200800656



Dendrimers

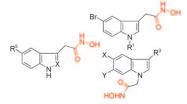
G. Bergamini, P. Ceroni,* V. Balzani, R. Kandre, O. Lukin*

Dendrimers with a Pentaphenylene Core: A Photophysical Study

A plodding dendrimer: Intense violet luminescence both in solution and in the solid state is shown by a family of dendrimers with a *p*-pentaphenylene core and sulfonimide branches. The fourthgeneration dendrimer (see image) has an extremely high steady-state fluorescence anisotropy in dichloromethane solution at 293 K.

ChemPhysChem

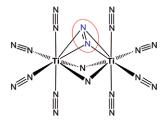
DOI: 10.1002/cphc.200800597



Antibiotics

S. Petit, Y. Duroc, V. Larue, C. Giglione, C. Léon, C. Soulama, A. Denis, F. Dardel, T. Meinnel, I. Artaud*

Structure—Activity Relationship Analysis of the Peptide Deformylase Inhibitor 5-Bromo-1*H*-indole-3-acetohydroxamic Acid

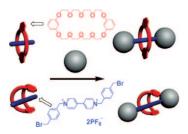

SAR by NMR. A series of indole compounds derived from 5-bromo-1*H*-indole-3-acetohydroxamic acid were synthesized. Their inhibitory activities were evaluated against purified peptide deformylases (PDFs), and their antibacterial activities against *B. subtilis*, *E. coli* (wild-type and *tolC*), and a variety of pathogens were also determined. The potency of the best inhibitors was related to the NMR footprints of the respective acids with ¹⁵N-labeled *E. coli* Ni-PDF.

ChemMedChem

DOI: 10.1002/cmdc.200800251

... ON OUR SISTER JOURNALS

Eur. J. Inorg. Chem. DOI: 10.1002/ejic.200801044

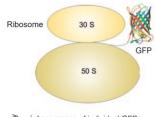

Dinitrogen Activation

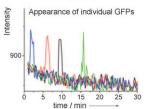
L. Manceron,* O. Hübner, H.-J. Himmel*

Dinitrogen Activation by the Ti₂N₂ Molecule: A Matrix Isolation

N₂ activation by a nitride: reaction of matrix-isolated Ti₂(μ-N)₂ with N₂ affords several new N₂ complexes with different degrees of N₂ bond activation. In neat solid N₂ matrices, the complex $[\{(N_2)_4Ti\}_2(\mu-N)_2(\mu-\eta^2:\eta^2-N_2)]$ is formed.

Eur. J. Org. Chem. DOI: 10.1002/ejoc.200801128

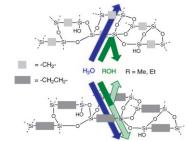

Crown Ether Rotaxanes


S. Li, K. Zhu, B. Zheng, X. Wen, N. Li, F. Huang*

A Bis(m-phenylene)-32-crown-10/Paraguat [2]Rotaxane

The first bis(*m*-phenylene)-32-crown-10/paraquat [2]rotaxane was synthesized by the threading-followed-by-stoppering strategy. The successful preparation of this [2]rotaxane showed unambiguously that pseudorotaxane-type complexation, rather than the previously reported taco-complex-type complexation, exists for complexation between bis(m-phenylene)-32-crown-10 and paraquat derivatives in solution.

Angew. Chem. Int. Ed. DOI: 10.1002/anie.200806070


Protein Folding -

A. Katranidis, D. Atta, R. Schlesinger, K. H. Nierhaus, T. Choli-Papadopoulou, I. Gregor, M. Gerrits, G. Büldt,* J. Fitter*

Fast Biosynthesis of GFP Molecules: A Single-Molecule **Fluorescence Study**

It's not easy being green: Real-time visualization of labeled ribosomes and de-novo-synthesized green fluorescent protein molecules using single-molecule-sensitive fluorescence microscopy demonstrates that the mutant GFPem is produced with a characteristic time of five minutes. Fluorescence of the fastest GFP molecules appears within one minute (see picture).

ChemSusChem DOI: 10.1002/cssc.200800198


Biofuel Production -

R. Kreiter, M. D. A. Rietkerk, H. L. Castricum, H. M. van Veen, J. E. ten Elshof, J. F. Vente*

Stable Hybrid Silica Nanosieve Membranes for the Dehydration of **Lower Alcohols**

A thirst for water: Organic-inorganic hybrid silica nanosieve membranes with narrow pore size distributions were developed for the separation of binary (bio)alcohol/water mixtures, for example, to remove water from wet biofuels during production. These membranes dehydrate lower alcohols and show a stable performance in the presence of significant amounts of acetic acid.

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

